116 research outputs found

    The ννγ\nu \nu \gamma Amplitude in an External Homogeneous Electromagnetic Field

    Full text link
    Neutrino-photon interactions in the presence of an external homogeneous constant electromagnetic field are studied. The ννγ\nu \nu \gamma amplitude is calculated in an electromagnetic field of the general type, when the two field invariants are nonzero.Comment: 7 pages, 1 figur

    gamma nu -> gamma gamma nu and crossed processes at energies below m_W

    Full text link
    The cross sections for the processes γνγγν\gamma \nu\to \gamma \gamma \nu, γγγννˉ\gamma\gamma\to\gamma\nu\bar{\nu} and ννˉγγγ\nu\bar{\nu}\to\gamma\gamma\gamma are calculated for a range of center of mass energies from below mem_e to considerably above mem_e, but much less than mWm_W. This enables us to treat the neutrino--electron coupling as a four--Fermi interaction and results in amplitudes which are electron box diagrams with three real photons and one virtual photon at their vertices. These calculations extend our previous low--energy effective interaction results to higher energies and enable us to determine where the effective theory is reliable.Comment: 12 pages, RevTex, 10 postscript figures include

    Photon-Neutrino Interactions in Magnetic Field through Neutrino Magnetic Moment

    Get PDF
    We study the neutrino-photon processes like γγννˉ\gamma\gamma\to\nu\bar{\nu} in the presence of uniform external magnetic field for the case when neutrinos can couple to the electromagnetic field directly through their dipole magnetic moment and obtain the stellar energy loss. The process would be of special relevance in astrophysical situations where standard left-handed neutrinos are trapped and the right handed neutrinos produced through the spin flip interaction induced by neutrino magnetic moment alone can freely stream out.Comment: LaTex2e file, 9 page

    High energy photon-neutrino elastic scattering

    Get PDF
    The one-loop helicity amplitudes for the elastic scattering process γνγν\gamma\nu\to\gamma\nu in the Standard Model are computed at high center of mass energies. A general decomposition of the amplitudes is utilized to investigate the validity of some of the key features of our results. In the center of mass, where s=2ω\sqrt{s} = 2\omega, the cross section grows roughly as ω6\omega^6 to near the threshold for WW-boson production, s=mW\sqrt{s} = m_W. Although suppressed at low energies, we find that the elastic cross section exceeds the cross section for γνγγν\gamma\nu\to\gamma\gamma\nu when s>13\sqrt{s}>13 GeV. We demonstrate that the scattered photons are circularly polarized and the net value of the polarization is non-zero. Astrophysical implications of high energy photon-neutrino scattering are discussed.Comment: 9 pages, 7 figures, RevTeX

    Neutrinos as Source of Ultra High Energy Cosmic Rays in Extra Dimensions

    Full text link
    If the neutrinos are to be identified with the primary source of ultra-high energy cosmic rays(UHECR), their interaction on relic neutrinos is of great importance in understanding their long intergalactic journey. In theories with large compact dimensions, the exchange of a tower of massive spin-2 gravitons (Kaluza-Klein excitations) gives extra contribution to ννˉffˉ\nu\bar{\nu} \longrightarrow f\bar{f} and γγ\gamma\gamma processes along with the opening of a new channel for the neutrinos to annihilate with the relic cosmic neutrino background ννˉGkk\nu\bar{\nu} \longrightarrow G_{kk} to produce bulk gravitons in the extra dimensions. This will affect their attenuation. We compute the contribution of these Kaluza-Klein excitations to the above processes and find that for parameters of the theory constrained by supernova cooling, the contribution does indeed become the dominant contribution above s300\sqrt{s} \simeq 300 GeV.Comment: 16 pages Latex2e file including 4 postscript figures. Effect of brane fluctuation taken into accoun

    High-energy neutrino conversion and the lepton asymmetry in the universe

    Get PDF
    We study matter effects on oscillations of high-energy neutrinos in the Universe. Substantial effect can be produced by scattering of the neutrinos from cosmological sources (z\gta 1) on the relic neutrino background, provided that the latter has large CP-asymmetry: \eta\equiv (n_\nu-n_{\bar{\nu}})/n_\gamma\gta 1, where nνn_\nu, nνˉn_{\bar{\nu}} and nγn_\gamma are the concentrations of neutrinos, antineutrinos and photons. We consider in details the dynamics of conversion in the expanding neutrino background. Applications are given to the diffuse fluxes of neutrinos from GRBs, AGN, and the decay of super-heavy relics. We find that the vacuum oscillation probability can be modified by (1020)\sim (10-20)% and in extreme cases allowed by present bounds on η\eta the effect can reach 100\sim 100%. Signatures of matter effects would consist (i) for both active-active and active-sterile conversion, in a deviation of the numbers of events produced in a detector by neutrinos of different flavours, Nα (α=e,μ,τ)N_{\alpha}~(\alpha=e,\mu,\tau), and of their ratios from the values given by vacuum oscillations; such deviations can reach 515\sim 5-15%, (ii) for active-sterile conversion, in a characteristic energy dependence of the ratios Ne/Nμ,Ne/Nτ,Nμ/NτN_{e}/N_{\mu},N_{e}/N_{\tau},N_{\mu}/N_{\tau}. Searches for these matter effects will probe large CP and lepton asymmetries in the universe.Comment: 32 pages, RevTeX, 16 figures. Substantial changes in the treatment of conversion effects in the relic neutrino background and of active-active oscillations of high-energy neutrinos. Figures and references added; conclusions partially modifie

    Reduction of the two-body dynamics to a one-body description in classical electrodynamics

    Get PDF
    We discuss the mapping of the conservative part of two-body electrodynamics onto that of a test charged particle moving in some external electromagnetic field, taking into account recoil effects and relativistic corrections up to second post-Coulombian order. Unlike the results recently obtained in general relativity, we find that in classical electrodynamics it is not possible to implement the matching without introducing external parameters in the effective electromagnetic field. Relaxing the assumption that the effective test particle moves in a flat spacetime provides a feasible way out.Comment: 20 pages, revtex; minor change

    Functional cyclophilin D moderates platelet adhesion, but enhances the lytic resistance of fibrin

    Get PDF
    In the course of thrombosis, platelets are exposed to a variety of activating stimuli classified as ‘strong’ (e.g. thrombin and collagen) or ‘mild’ (e.g. ADP). In response, activated platelets adhere to injured vasculature, aggregate, and stabilise the three-dimensional fibrin scaffold of the expanding thrombus. Since ‘strong’ stimuli also induce opening of the mitochondrial permeability transition pore (MPTP) in platelets, the MPTP-enhancer Cyclophilin D (CypD) has been suggested as a critical pharmacological target to influence thrombosis. However, it is poorly understood what role CypD plays in the platelet response to ‘mild’ stimuli which act independently of MPTP. Furthermore, it is unknown how CypD influences platelet-driven clot stabilisation against enzymatic breakdown (fibrinolysis). Here we show that treatment of human platelets with Cyclosporine A (a cyclophilin-inhibitor) boosts ADP-induced adhesion and aggregation, while genetic ablation of CypD in murine platelets enhances adhesion but not aggregation. We also report that platelets lacking CypD preserve their integrity in a fibrin environment, and lose their ability to render clots resistant against fibrinolysis. Our results indicate that CypD has opposing haemostatic roles depending on the stimulus and stage of platelet activation, warranting a careful design of any antithrombotic strategy targeting CypD

    Ischaemic conditioning and targeting reperfusion injury: a 30 year voyage of discovery

    Get PDF
    To commemorate the auspicious occasion of the 30th anniversary of IPC, leading pioneers in the field of cardioprotection gathered in Barcelona in May 2016 to review and discuss the history of IPC, its evolution to IPost and RIC, myocardial reperfusion injury as a therapeutic target, and future targets and strategies for cardioprotection. This article provides an overview of the major topics discussed at this special meeting and underscores the huge importance and impact, the discovery of IPC has made in the field of cardiovascular research
    corecore